Screening Hub Genes in Microbial Keratitis Based on Gibbs Sampling Analysis
نویسندگان
چکیده
منابع مشابه
On particle Gibbs sampling
The particle Gibbs sampler is a Markov chain Monte Carlo (MCMC) algorithm to sample from the full posterior distribution of a state-space model. It does so by executing Gibbs sampling steps on an extended target distribution defined on the space of the auxiliary variables generated by an interacting particle system. This paper makes the following contributions to the theoretical study of this a...
متن کاملMultilocus linkage analysis by blocked Gibbs sampling
The problem of multilocus linkage analysis is expressed as a graphical model, making explicit a previously implicit connection, and recent developments in the field are described in this context. A novel application of blocked Gibbs sampling for Bayesian networks is developed to generate inheritance matrices from an irreducible Markov chain. This is used as the basis for reconstruction of histo...
متن کاملNetwork analysis based on TCGA reveals hub genes in colon cancer
Colorectal cancer (CRC) is the third most widespread cancer in the world. Although many advances have been made in molecular biology, novel approaches are still required to reveal molecular mechanisms for the diagnosis and therapy of colon cancer. In this study, we aimed to determine and analyse the hub genes of CRC. First, we explored the mRNA and microRNA (miRNA) expression profiles of colon ...
متن کاملHerded Gibbs Sampling
The Gibbs sampler is one of the most popular algorithms for inference in statistical models. In this paper, we introduce a herding variant of this algorithm, called herded Gibbs, that is entirely deterministic. We prove that herded Gibbs has an O(1/T ) convergence rate for models with independent variables and for fully connected probabilistic graphical models. Herded Gibbs is shown to outperfo...
متن کاملOn Lifting the Gibbs Sampling Algorithm
First-order probabilistic models combine the power of first-order logic, the de facto tool for handling relational structure, with probabilistic graphical models, the de facto tool for handling uncertainty. Lifted probabilistic inference algorithms for them have been the subject of much recent research. The main idea in these algorithms is to improve the accuracy and scalability of existing gra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: INTERNATIONAL JOURNAL OF HUMAN GENETICS
سال: 2018
ISSN: 0972-3757,2456-6330
DOI: 10.31901/24566330.2018/18.2.697